
	 1	

UTLS	2000		
Turbulence	 by	Uriel	 Frisch,	 OCA,	Nice,	 France	 .	 English	 version	 presented	 in	Moscow,	
Beijing	and	Rio		
	
The	word	 "turbulence"	originally	meant	 "disordered	movements	of	a	 crowd"	 (in	Latin	
turba	means	crowd).	In	the	Middle	Ages	in	France	"turbulence"	was	used	as	a	synonym	
for	"troubles".	Thus,	on	an	old	French	manuscript	displayed	at	the	J.	Paul	Getty	Museum	
in	 Los	 Angeles,	 some	 years	 ago	 I	 found	 a	 "Seigneur,	 délivrez	 nous	 des	 turbulences"	
[English:	 "Lord,	 	 deliver	 us	 from	 turbulence";	 Portuguese:	 "Senhor,	 livra	 nois	 das	
turbulencias"]	 As	 you	 can	 see,	 the	meaning	 then	 evolved.	 	 First,	 turbulence	 is	 part	 of		
everyday's	experience:	no	need	for	a	microscope	or	a	telescope	to	observe	the	volutes	of	
the	smoke	of	a	cigarette,	the	graceful	arabesques	of	the	cream	poured	into	coffee,	or	the	
entanglements	of	eddies	in	a	mountain	stream	[Figure	1].	What	we	see	is	very	complex,	
it's	quite	messy	but	it	is	very	far	from	being	total	disorder.	When	we	look	at	a	turbulent	
flow,	even	in	snapshot,	on	a	photo,	what	we	see	is	far	more	fascinating	than	the	kind	of	
total	 chaos	obtained,	 for	 example,	 by	projecting	 a	handful	 of	 dry	 sand	onto	 a	 sheet	 of	
paper.	Turbulence,	when	you	observe	it,	is	full	of	structures,	especially	"eddies,"	entities	
known	since	Antiquity,	studied	and	painted	by	Leonardo	da	Vinci	(which	was	probably	
the	 first	 to	 use	 the	word	 turbulence	 -	 turbolenza	 in	 Italian	 -	 to	 describe	 the	 complex	
motion	of	water	or	air).	I	believe	it's	this	intimate	mix	of	order	and	disorder	that	in	fact	
constitutes	 both	 the	 charm	 and,	 it	 must	 be	 stated,	 one	 of	 the	 main	 difficulties	 of	
turbulence.			
	
It	 is	very	easy	to	get	turbulence.	In	fact,	every	time	a	fluid	flows	around	a	obstacle,	 for	
example	in	the	wake	of	a	boat,	provides	and	the	speed	is	is	not	too	low,	well,	we'll	have	
turbulence.	So	there	is	turbulence	everywhere:	the	blood	flow		inside	our	blood	vessels,	
the	air	flows	around	an	automobile	or	a	plane	-	responsible	for	the	famous	"turbulence"	
for	which	we	 are	 asked	 to	 attach	 our	 seat	 belts	 -	 or	 the	motion	 of	 the	 atmosphere	 in	
meteorology,	 the	 motion	 of	 gas	 inside	 stars	 such	 as	 our	 Sun,	 and	 finally	 the	 density	
fluctuations	of	the	early	Universe	giving	rise	later	to	the	great	structures	of	the	present	
Universe,	such	as	the	clusters	of	galaxies	[Figure	2].	Without	all	 this	turbulence,	urban	
pollution	would	persist	for	millennia,	the	heat	produced	by	the	nuclear	reactions	in	the	
stars	would		not	be	able	to	escape	on	an	acceptable	time	scale	and	the	weather		would	
become	predictable	over	very	extended	periods.			
	
The	equations	governing	the	movements	of	fluids,	whether	turbulent	or	not,	have	been	
written	for	the	first	time	by	Claude	Navier	in	1823.	They	are	often	called	Navier-Stokes	
equations	because	of	improvements	made	later	by	George	Stokes.	In	fact	it	is	essentially	
Newton's	equations,	which	connect	the	force	and	the	acceleration,	equations	that	must	
be	applied	to	each	parcel	of	the	fluid	what	was	done	for	the	first	time	by	Leonardo	Euler	
in	the	middle	of	the	eighteens	century.	 	Navier's	crucial	contribution	was	to	add	to	the	
Euler	 equations	 a	 friction	 term	 between	 the	 various	 fluid	 layers	 proportional	 to	
coefficient	of	viscosity	and	speed	variations	 [Figure	3].	These	equations,	which	can	be	
solved	with	 powerful	 computers,	 still	 involve	major	 challenges	 to	which	 I	 shall	 come	
back.			
	
Turbulence	became	an	experimental	science	towards	the	end	of	the	19th	century	when	
Englishman	 Osborne	 Reynolds	 was	 able	 to	 observe	 the	 transition	 from	 laminar	 to	
turbulent	regime.	You	know	that	in	a	pipe,	if	the	water	flows	slowly,	the	flow	will	also	be	
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very	 regular.	 This	 is	 called	 	 a	 laminar	 flow.	 If	 the	 flow	 is	 fast	 enough,	we	observe	 the	
formation	 of	 turbulence	 with	 many	 eddies.	 Reynolds	 discovered	 rather	 simple	 laws	
applying	 to	 any	pipe	 for	 this	 transition	 to	 turbulence;	 he	 introduced	 a	 number,	 called	
since	 the	Reynolds	number,	which	 is	simply	 the	product	of	 the	diameter	of	 the	pipe	D	
and	the	average	velocity	of	the	flow	in	the	pipe	V,		divided	by	the	(kinematic)	viscosity	of	
the	fluid	nu	(viscosity	of	the	air	approximately	0.1	cm	2	/	S,	viscosity	of	the	water	0.01	
cm	2	/	S)	is	R	=	DV	/	nu.	Reynolds	has	shown	that	when	this	number	exceeds	a	certain	
critical	 value,	 the	 order	 of	 a	 few	 thousands,	 then	 all	 of	 	 sudden,	 the	 flow	 becomes	
turbulent.	Transitions	similar	but	more	spectacular	are	observed	in	open	flows	behind	a	
cylinder	[figure	4].	Leonardo	had	already	seen	the	phenomenon	of	eddy	street	and	had	
is	almost	correct	[Figure	5].			
	
A	very	important	characteristic	of	these	turbulent	flows,	which	appears	at	the	transition,	
is	their	chaotic	character.	More	precisely,	turbulent	flows	appear	as	unpredictable.	What	
does	it	mean,	non-predictable?	Suppose	we	know	in	detail	the	configuration	of	the	flow	
at	 a	 given	 moment.	 Although	 the	 flow	 is	 governed	 by	 well-defined	 deterministic	
equations,	as	we	say,	 in	practice,	 it	 is	not	possible	 to	predict	 the	subsequent	evolution	
for	long	periods.	This	theory	of	chaos,	which	owes	much	to	Henri	Poincaré,	David	Ruelle,	
Edward	Lorenz	and	to	the	Russian	School	of	Kolmogorov	and	his	pupils	Vladimir	Arnold	
and	Yacov	Sinai,	has	very	important	implications	in	meteorology.	Let's	imagine	that,	to	
predict	time,	we	measure,	at	a	given	moment,	the	wind,	the	pressure,	the	temperature	in	
all	points	of	 the	planet	and	that	we	try	 to	predict	 the	subsequent	evolution	of	 time	by	
computer	calculation.	In	fact,	after	relatively	short	time,	you	will	not	be	able	to	predict	in	
a	detailed	way	find	the	atmosphere,	and	this	regardless	of	the	power	of	computers.	It	is	
said	that	the	atmospheric	turbulence	is	unpredictable,	it	ends	up	being	sensitive	to	the	
slightest	sneeze	or	a	 flutter	of	a	butterfly,	as	suggested	by	the	American	meteorologist	
Ed	Lorenz.	 	This	"butterfly	effect"	 is	 illustrated	in	Figure	6	where	the	curves	represent	
not	 the	 trajectory	 of	 a	 butterfly	 but	 -	 symbolically	 -	 the	 trajectory	 of	 the	 point	
representative	of	the	whole	of	the	system	studied.	The	upper	black	curve	corresponds	to	
the	case	without	butterfly	and	 the	 lower	black	curve	 to	 the	 trajectory	modified	by	 the	
initial	presence	of	 a	wing	 flap	of	 a	butterfly.	Both	 trajectories	 remain	 close	at	 first	 (to	
show	it	I	repeated	a	dotted	version	of	the	upper	trajectory)	then	move	off	rather	quickly.	
In	practice	 it	 is	not	possible	 to	predict	 in	detail	 the	weather	will	do	beyond	about	 ten	
days,	although	the	situation	may	be	more	favorable	in	the	tropics.				
	
In	geophysics	and	astrophysics	gigantic	Reynolds	numbers	of	hundreds	of	millions	and	
well	 beyond	 are	 commonplace.	 A	 very	 interesting	 point	 is	 that	 when	 increases	 the	
number	 of	 Reynolds,	 which	 can	 be	 done	 for	 example	 by	 reducing	 its	 viscosity,	 there	
appear	more	and	more	small	eddies	as	you	see	in	Figure	7	which	presents	a	turbulent	
jet.	Each	vortex	is	a	bit	like	a	kind	of	molecule.	It	is	what	we	call	"degrees	of	freedom".	So	
high	Reynolds	numbers	mean	that	there	are	many	degrees	of	freedom;	this	is	called	the	
fully	 developed	 turbulence	 regime.	 It	 is	 easy	 to	 observe	 this	 regime	 in	 a	 large	 wind	
tunnel	like	those	where	we	test	models	of	cars	and	planes.	If	we	examines	the	behavior	
as	a	function	of	time	of	the	speed	at	a	point	of	such	a	flow	measured	by	a	probe,	we	are	
struck	 by	 the	 analogy	 with	 the	 Brownian	 motion	 curve	 [Figure	 8].	 The	 latter	 can	 be	
imagined	by	recording	as	a	function	of	time	the	location	of	a	drunkard	walking	the	street	
of	a	village	with	many	taverns;	of	course,	our		drunkard		will	sometimes	move	down	the	
street	and	sometimes	up	the	street,	without	ever	remembering	the	previous	direction.	In	
other	words,	 the	 drunkard	 performs	 a	 random	walk.	 	 It's	 easy	 to	 see	 that	 the	 typical	
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displacement	of	 such	a	drunkard	during	a	 certain	 time	 interval	 is	proportional,	not	 to	
the	elapsed	 time,	but	 to	 its	 square	 root	 	 (the	 same	 law	 that	governs	errors	 in	opinion	
polls).	 In	 fully	 developed	 turbulence	 one	 finds	 that	 the	 variation	 of	 speed	 during	 a	
certain	time	interval	is	proportional,	not	to	the	square	root,but	to	the		cubic	root	of	time	
elapsed.	This	cubic	root	law,	obtained	in	fact	by	a	dimensional	argument	related	to	the	
conservation	 of	 energy,	 was	 predicted	 in	 1941	 by	 the	 Russian	mathematician	 Andrei	
Kolmogorov	 and	 has	 been	 fairly	 widely	 validated	 by	 computer	 experiments	 and	
simulations.	In	fact,	in	1922	the	Englishman	Lewis	Fry	Richardson,	had	sensed	what	was	
happening	by	presenting	his	vision	of	the	cascade	of	energy	from	large	to	small	scales	of	
turbulent	flow,	vision	directly	inspired	by	a	poem	of	the	English	poet	Jonathan	Swift:			
	
Rather	than	trying	to	translate,	I	ask	you	to	imagine	a	big	flea	in	the	process	of	sucking	
your	 dog's	 blood,	 blood	 that	 will	 here	 play	 the	 role	 that	 kinetic	 energy	 plays	 in	
turbulence.	Now	imagine	that	the	big	flea	is	in	turn	beset	with	more	little	fleas	that	suck	
its	 blood	 and	 so	 on	 until	 reaching	 fleas	 so	 small	 that	 the	 blood	 is	 broken	 down	 by	
molecular	processes.	It	is	clear	that	the	monster	thus	come	out	of	Swift's	imagination	is	
what	 Benoît	 Mandelbrot	 called	 a	 fractal.	 These	 fractals	 can	 be	 characterized	 by	 a	
dimension	 that	 is	 not	 an	 integer.	 The	 objects	 of	 whole	 dimension	 0,	 1,	 2,	 3	 are,	 for	
example,	points,	lines,	surfaces	and	volumes.	To	imagine	an	object	of	fractal	dimension	
between	2	and	3	think	for	example	of	a	cauliflower.	The	fractal	dimension	of	turbulence	
-	 more	 precisely	 what	 mathematicians	 call	 the	 Hausdorff	 dimension	 of	 energy	
dissipation	 -	 is	 very	 close	 to	 three.	Would	 it	 be	 exactly	 three,	 the	 theory	proposed	by	
Kolmogorov	 in	 1941	 would	 be	 correct,	 which	 explains	 the	 success	 of	 this	 theory	 in	
developing	 empirical	 models	 for	 computations	 engineers.	 	 The	 calculation	 of	 such	
dimensions	from	the	fundamental	equations	of	the	mechanics	of	fluids	remains	an	open	
problem.	 However,	 important	 progress	 has	 been	 made	 in	 the	 last	 20	 years	 using	
mathematical	tools	borrowed	from	quantum	field	theory,	applied	to	a	simplified	model	
due	to	the	American	Robert	Kraichnan.	In	this	model	one	assumes	that		turbulent	flow	is	
prescribed	and	one	seeks	to		characterize	the	properties	of	a	tracer	transported	by	this	
turbulence,	 as	 illustrated	 by	 figure	 9	 of	 Antonio	 Celani,	 Alain	 Noullez	 and	 Massimo	
Vergassola,	 representing	 a	 snapshot	 of	 the	 concentration	 of	 a	 tracer	 obtained	 by	
simulation	the	computer.	One	can	imagine	for	example	that	 it	 is	the	concentration	of	a	
released	pollutant	in	the	ocean,	We	now	know	how	to	calculate	the	fractal	properties	of	
such	pollutants,	but	 it	will	probably	years	before	being	able	to	carry	out	a	comparable	
business	for	Fractal	properties	of	turbulence	itself.			
	
In	a	turbulent	flow,	the	temporal	variation	of	the	velocity	at	a	point	is	generally	not	very	
far	 from	being	 given	by	 cubic	 root	 law	of	Kolmogorov,	 but	we	have	known	 for	 a	 long	
time	that	things	can	be	more	complex.	Already	in	1843	Adhémar	Barré	de	Saint	Venant	
observed	that	"the	flow	in	the	channels	of	 large	sections,	those	of	which	we	would	say	
today	 that	 they	 have	 a	 large	 Reynolds	 number,	 present	 ruptures,	 eddies	 and	 other	
complicated	motions.	"The	interesting	point	are	the	ruptures.	It	is	found	experimentally	
that	the	velocity	may	occasionally,	vary	considerably	between	two	neighboring	points.	If	
by	chance	the	scale	of	this	variation	becomes	comparable	to	the	distance	traveled	by	the	
molecules	 of	 the	 fluid	 between	 two	 successive	 collisions,	 then	we	need	 to	 rethink	 the	
mathematical	 foundations	 of	 the	 Navier-Stokes	 equations.	 The	 traditional	 way	 of	
obtaining	these	equations	supposes	indeed	a	strong	separation	between	the	microscopic	
world	of	molecules	and	the	world,	called	"macroscopic"	where	the	fluid	 is	treated	as	a	
continuous	medium.					
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This	brings	me	 to	 the	great	mathematical	 challenge	 that	 is	 the	subject	of	one	of	 seven	
awards	 in	 the	amount	of	one	million	dollars	announced	by	 the	Clay	Foundation	 in	 the	
year	2000.	The	problem	is	to	show	that	the	Navier-Stokes	equations	lead	to	a	well-posed	
problem.	This	means	that	if	we	know	the	motion	of	the	fluid	at	an	initial	moment	we	are	
able	to	show	that	 there	 is	a	unique	solution	at	any	 later	time.	Note	that	 in	the	present	
case	 our	 problem	 is	 not	 about	 error	 growth	 in	 time	 but	 about	 the	 uniqueness	 of	 the	
solution.	This	problem	has	been	solved	 in	the	thirties	by	Jean	Leray	 in	the	case	of	 two	
dimensions	of	space	(which	is	relevant	in	meteorology	and	oceanography).	The	problem	
is	much	more	difficult	in	three	dimensions.	I	will	try	now	to	give	a	very	small	glimpse	of	
the	difficulty	without	use	of	advanced	mathematical	formalism.	First	of	all	 it	should	be	
noted	 that	 in	 a	 fluid	 that	 is	 not	 in	 uniform	motion	 the	 fluid	 threads	 rub	 against	 each	
other,	because	of	 the	viscosity,	which	 tends	 to	slow	down	 their	 relative	movement.	At	
low	 speed,	 so	 at	 low	 numbers	 Reynolds	 (the	 latter	 is	 proportional	 to	 the	 speed),	 the	
effect	 of	 viscous	 friction	 is	 very	 important	 for	 all	 the	 eddies	 present	 in	 the	 flow.	 This	
friction	flattens	everything	and	we	can	prove	-	it	is	not	very	difficult	-	that	the	problem	is	
well	 posed.	 In	 contrast,	 at	 large	 Reynolds	 numbers,	 the	 effect	 of	 viscous	 friction	 is	
limited	 to	 the	 smaller	 vortices	 and	 the	 problem	 is	 close	 to	 the	 problem	 of	 an	 ideal	
(inviscid)	fluid	in	which	the	viscosity	is	ignored.	We	know	that	the	latter	problem	is	well	
posed	for	a	short	time	but	not	beyond.	Roughly,	the	best	we	know,	for	now,	is	that	the	
ideal	 flow	 does	 not	 behave	 better	 than	 a	mobile	 object	 whose	 acceleration	would	 be	
proportional	 to	 the	 square	 of	 its	 speed,	 an	 assumption	 that	 leads	 to	 a	 catastrophic	
increase	in	the	speed	that	becomes	infinite	 in	a	 finite	time;	 in	other	words	it	blows	up	
[Figure	10].	Some	computer	numerical	simulations	suggest	that	the	ideal	fluid	is	actually	
much	wiser,	 does	 not	 explode,	 and	 thus	 leads	 to	 a	 problem	well	 posed	 for	 arbitrarily	
long	 times.	 It	 is	 also	 possible	 that	 the	 ideal	 fluid	 does	 blow	 up	 but	 that	 the	 effect	 of	
viscous	 friction	 prevents	 this.	 	 This	 is	 precisely	 what	 happens	 in	 Kolmogorov's	 1941	
theory,	but	not	necessarily	so	in	reality.			
	
To	 conclude,	 I	 would	 like	 to	 emphasize	 that	 turbulence	 has	 a	 very	 special	 status	 in	
contemporary	physics.	It	is	often	considered	as	one	of	the	big	open	issues	of	physics,	but	
unlike	other	frontier	problems	of	physics,	the	phenomena	in	which	one	is	interested	in	
turbulence	are	neither	 in	the	infinitely	small	nor	 in	general,	 in	the	infinitely	big.	These	
phenomena	are	perfectly	well	described	by	Newtonian		mechanics,	without	any	need	to	
have	 recourse	 to	 quantum	 physics	 or	 to	 relativistic	mechanics,	 that	 is	 to	 the	modern	
ideas	of	physics	on	space,	 time	and	matter.	As	you	can	see,	 "classical"	physics,	 i.e.,	 the	
one	taught	in	high	school,	still	has	some	great	mysteries.			
	


